CHROMBIO. 7127

Gas chromatographic-mass spectrometric determination of leukotriene E_4 in human urine using deuterium-labelled leukotriene E_4 standards

D. Tsikas*, J. Fauler and F.M. Gutzki

Institute of Clinical Pharmacology, Hannover Medical School, Konstanty-Gutschow Str. 8, D-30625 Hannover (Germany)

Th. Röder and H.J. Bestmann

Institute of Organic Chemistry, University of Erlangen-Nürnberg, Erlangen (Germany)

J.C. Frölich

Institute of Clinical Pharmacology, Hannover Medical School, Konstanty-Gutschow Str. 8, D-30625 Hannover (Germany)

(First received June 15th, 1993; revised manuscript received September 15th, 1993)

ABSTRACT

The utility of two deuterium-labelled leukotriene (LT) E_4 analogs, e.g. $[20,20,20^{-2}H_3]LTE_4$ and $[14,15,17,17,18,18^{-2}H_6]LTE_4$, as internal standards for the determination of LTE₄ in human urine by gas chromatography-mass spectrometry (GC-MS) was investigated. 2H -Exchange during hydrogenation occurred both in $[20,20,20^{-2}H_3]LTE_4$ and $[14,15,17,17,18,18^{-2}H_6]LTE_4$ in an extent of $9.4\pm0.5\%$ and $67.3\pm0.6\%$ (mean \pm S.D., n=6), respectively. The lower extent of 2H -exchange in $[20,20,20^{-2}H_3]LTE_4$ allowed a more accurate quantitation than the use of $[14,15,17,17,18,18^{-2}H_6]LTE_4$. Applying $[20,20,20^{-2}H_3]LTE_4$ as internal standard the coefficients of variation for the intra- and inter-assay determination of LTE₄ in human urine were 5.7% and 6.2% (n=4), respectively. The inter-assay coefficient of variation for $[14,15,17,17,18,18^{-2}H_6]LTE_4$ was 15%. Using $[20,20,20^{-2}H_3]LTE_4$ as internal standard and GC-MS, healthy volunteers were found to excrete 17 ± 10 nmol LTE₄ per mol creatinine (mean \pm S.D., n=11). Similar excretion rates for LTE₄ in urine of healthy volunteers were found using GC-tandem MS with $[1,1^{-18}O_2]LTE_4$ as internal standard. Our results demonstrate that $[20,20,20^{-2}H_3]LTE_4$ is a suitable internal standard for the GC-MS determination of urinary LTE₄.

INTRODUCTION

Cysteinyl leukotrienes are potent mediators of inflammation [1]. They are thermally labile and non-volatile compounds. Their direct analysis by gas chromatography-mass spectrometry (GC-MS) is therefore impossible. However, catalytical reduction and desulphurization of these

substances to 5-hydroxyeicosanoic acid (5-HEA) enables cysteinyl leukotrienes to be determined by GC-MS [2]. A prerequisite for their quantitation by GC-MS is the availability of stable isotope-labelled cysteinyl leukotrienes analogs. Recently, the synthesis and the utility of [1,1-18O₂]LTE₄ as internal standard for the GC-MS determination of urinary LTE₄ [3], the index metabolite of cysteinyl leukotrienes in humans [4,5], has been described. In the literature the synthesis of [20,20,20-2H₃]LTE₄ [6] and

^{*} Corresponding author.

 $[8,9,10,11^{-13}C_4]LTE_4$ [7] has also been described. From these [20,20,20-2H₃]LTE₄ is commercially available (Biomol, Hamburg, Ger-[14,15,17,17,18,18-²H₆]LTE₄ many). atom% ²H) was synthesized in our laboratory starting from [14,15,17,17,18,18-²H₆]LTA₄ methylester [8] and cysteine methylester hydrochloride. In particular with respect to the common phenomenon of ²H-exchange by ¹H during catalytic hydrogenation, which has also been reported for some ²H-labelled cysteinyl leukotrienes [2], it was of interest to investigate whether the commercially available [20,20,20-²H₃]LTE₄ and the newly synthesized $[14,15,17,17,18,18^{-2}H_6]LTE_4$ are useful as internal standards for the determination of LTE4 in human urine by GC-MS. This study demon-²H/H-exchange strates that despite $[20,20,20^{-2}H_3]LTE_4$ and [14,15,17,17,18,18-²H₃]LTE₄ are suitable internal standards. However, [20,20,20-2H₃]LTE₄ permits more accurate quantification of urinary LTE, by GC-MS. Using [20,20,20-2H₃]LTE₄ the urinary excretion rate of LTE₄ in healthy normal volunteers was assessed.

EXPERIMENTAL

Chemicals and reagents

[20,20,20-²H₃]LTE₄ (99.8 atom% ²H) was obtained from Biomol (Hamburg, Germany). [14,15-³H₂]LTE₄ was obtained from DuPont (Dreieich, Germany). Hydrogen and deuterium gas (99 atom% ²H) were obtained from Merck (Darmstadt, Germany). The catalyst 5% (w/w) Rh on alumina was obtained from Fluka (Neu-Ulm, Germany) and was washed with ethanol prior to use. Pentafluorobenzyl (PFB) bromide was purchased from Aldrich (Steinheim, Germany). N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) was from Pierce (Rockford, IL, USA). [1,1-¹⁸O₂]LTE₄ (90 atom% ¹⁸O) was synthesized as described previously [3].

Catalytical reduction/desulphurization

Catalytical reduction/desulphurization of LTE₄ and labelled-LTE₄, and derivatization of labelled and unlabelled 5-HEA to the corre-

sponding PFB ester trimethylsilyl (TMS) ether derivatives using PFB bromide and BSTFA, respectively, were performed in most experiments as described previously [3,9]. For catalytical reduction/desulphurization hydrogen as well as deuterium gas were used.

Solid-phase extraction and reversed-phase highperformance liquid chromatography

Endogenous LTE4 and the stable isotopelabelled LTE4 (2 ng in most experiments) added to 20-ml urine samples were solid-phase extracted, purified and isolated by reversed-phase high-performance liquid chromatography (RP-HPLC) as described elsewhere [9-11]. The retention times of unlabelled LTE₄, [20,20,20- $^{2}H_{3}$]LTE₄, [14,15,17,17,18,18- $^{2}H_{6}$]LTE₄ $[1,1^{-18}O_2]LTE_4$ in this system were (mean ± S.D.): 48.5 ± 1.4 (n = 10), $48.1 \pm \widehat{1}.5$ (n = 3), 47.9 ± 1.4 (n = 3), and 48.4 ± 1.5 (n = 10) min, respectively. RP-HPLC fractions were collected in 1-min intervals between the 45th and 53rd min and aliquots thereof were counted. Radioactivity containing fractions were pooled and treated further for catalytic reduction/desulphurization.

Gas chromatographic-mass spectrometric conditions

GC-MS was performed on a Hewlett-Packard MS Engine 5989A directly connected with a gas chromatograph HP 5890 series II (Waldbronn, Germany). The gas chromatograph equipped with a fused silica capillary column HP1 (12 m \times 0.25 mm I.D., 0.25 μ m film thickness) maintained at a temperature of 100°C. Helium (35 kPa) and methane (200 Pa) were used as carrier and reagent gas for negative-ion chemical ionization (NICI), respectively. The following oven temperature program was used: the column was held for 2 min at 100°C, then the temperature was increased to 250°C at a rate of 25°/min and next to 320°C at a rate of 4°C/min. The interface and ion source were kept at 280°C and 225°C, respectively. Electron energy and electron current were set at 230 eV and 300 μ A, respectively. Aliquots of 1 μ l were injected in the splitless mode.

GC-tandem MS (GC-MS-MS) was carried

out on a Finnigan MAT gas chromatograph 9611 equipped with a fused silica capillary column OV1, 25 m \times 0.25 mm I.D., film thickness 0.25 μm (Macherey-Nagel, Düren, Germany) interfaced with a triple-stage quadrupole mass spectrometer Finnigan MAT TSQ 45 (San Jose, CA, USA) operating in the NICI mode with methane as reagent gas at a pressure of 65 Pa. Helium was used as carrier gas at a pressure of 50 kPa. The ionization energy was 90 eV and the electron current 300 µA. Argon was used for collision activated dissociation (CAD) at a cell pressure of 0.2 Pa. The collision energy was 14 eV. Constant temperatures were maintained at the interface (280°C), ion source (130°C) and injector (280°C). The same oven temperature program was used as described above for GC-MS. Aliquots of 1–2.5 μ l were injected in the splitless mode.

RESULTS

Fig. 1 shows NICI mass spectra obtained from the PFB-TMS derivatives of catalytically hydrogenated unlabelled (a), [20,20,20-LTE₄ ${}^{2}\text{H}_{3}$]LTE₄ (b), [14,15,17,17,18,18- ${}^{2}\text{H}_{6}$]LTE₄ (c), and [1,1-18O₂]LTE₄ (d). Catalytic hydrogenation of unlabelled LTE₄ led to a single compound, e.g. 5-HEA, with the most intensive signal at m/z 399 ([M – PFB]⁻) (Fig. 1a). The major mass fragment in the mass spectrum derived from $[20,20,20^{-2}H_3]LTE_4$ (Fig. 1b) is m/z 402 which corresponds to $[^{2}H_{3}]$ -5-HEA. The less intensive signal at m/z 399 corresponds to 5-HEA and results from exchange of all three ²H atoms with ¹H atoms during hydrogenation. The mass spectrum derived from catalytically hydrogenated $[14,15,17,17,18,18-{}^{2}H_{6}]LTE_{4}$ (Fig. 1c) shows a group of intensive ions at m/z 399, 400,

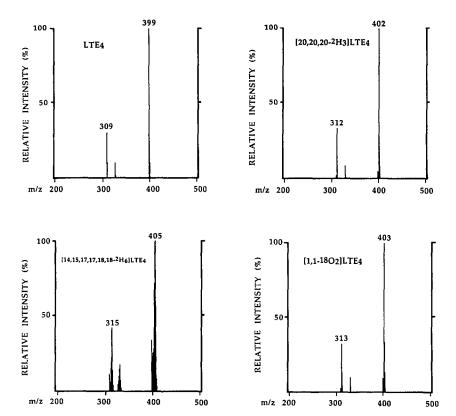


Fig. 1. NICI mass spectra of the PFB-TMS derivatives of reduced/desulphurized LTE₄ (a), $[20,20,20^{-2}H_3]LTE_4$ (b), $[14,15,17,17,18,18^{-2}H_6]LTE_4$ (c), and $[1,1^{-18}O_2]LTE_4$ (d).

401, 402, 403, 404, 405, 406 and 407. These signals, except for m/z 406 and 407, correspond to 5-HEA with various 2 H atoms. The signal at m/z 399 corresponds to 5-HEA from exchange of all six 2 H atoms of [14,15,17,17,18,18- 2 H₆]LTE₄ with 1 H atoms. The major mass fragments in the mass spectrum derived from [1,1- 18 O₂]LTE₄ (Fig. 1d) are m/z 403 and m/z 401 corresponding to [1,1- 18 O₂]-5-HEA and [1,1- 18 O¹⁶O]-5-HEA.

The extent of the ²H/H-exchange and its variability in both [20,20,20-2H₃]LTE₄ and $[14,15,17,17,18,18-{}^{2}H_{6}]LTE_{4}$ are of great importance for quantitation of LTE₄. Six samples of each [20,20,20-²H₃]LTE₄, [14,15,17,17,18,18- $^{2}H_{6}$]LTE₄ and [1,1- $^{18}O_{2}$]LTE₄ (0.5 ng, 1 ng, 2 ng, 5 ng, 10 ng and 50 ng) were subjected separately to catalytical reduction/desulphurization using hydrogen gas. GC-MS analysis of the PFB-TMS derivatives was carried out by selected ion monitoring (SIM) on m/z of the ions [M – PFB], e.g. m/z 399, 400, 401 and 402 for $^{2}H_{2}$ LTE₄, m/z 399 to m/z 405 for ${}^{2}H_{6}$ -LTE₄, and m/z 399, 401 and 403 for ${}^{18}O_2$ -LTE₄. The ratio m/z 399 to m/z of $[M-PFB]^{-}$ (m/z 402 for $[20,20,20^{-2}H_3]LTE_4$, m/z 405 for [14,15,17] $17,18,18^{-2}H_{6}$]LTE₄ and m/z 403 for $[1,1^{-18}O_{2}]$ LTE₄) was determined from the peak areas of the corresponding ions of each LTE₄. Similarly, the relative contributions of the ion at m/z 399 and of the ions [M – PFB] were calculated by dividing the peak area of these ions by the sum of the peak areas of all corresponding ions of each LTE₄, respectively. The results of these

experiments are summarized in Table I. This table clearly shows that [1,1-¹⁸O₂]LTE₄ is superior with respect to accuracy over the ²H-analogs. However, the relative low ²H/H-exchange in [20,20,20-²H₃]LTE₄ and its constant value should allow its use as an internal standard for LTE₄ in GC-MS. The corresponding data for [14,15,17,17,18,18-²H₆]LTE₄ in Table I suggest that this analogue is less suitable as an internal standard.

Linearity was checked by separate catalytic reduction/desulphurization of synthetic LTE₄ up to 10 ng using 2 ng each of $[20,20,20^{-2}H_3]LTE_4$, $[14,15,17,17,18,18-{}^{2}H_{6}]LTE_{4}$, and $[1,1-{}^{18}O_{2}]$ -LTE₄. For all three internal standards linear relationships $(r^2 > 0.989)$ were obtained by SIMs on m/z 399, 402, 405, and 403, respectively. Furthermore, linearity $(r^2 > 0.957)$ was also observed for LTE₄ added (up to 1000 pg/ml) to human urine samples (20 ml) using 2 ng of [20,20,20-2H₃]LTE₄ or 2 ng of [14,15,17,17, 18,18-2H₆|LTE₄, as observed by GC-MS-MS in the selected reaction monitoring (SRM) mode of the daughter ions ($[M - PFB - CH_3CH_2COO$ -TMS] at m/z 253 for LTE₄, m/z 256 for $[20,20,20^{-2}H_3]LTE_4$ and m/z 259 $[14,15,17,17,18,18^{-2}H_{6}]LTE_{4}$ [3].

Based on the data of Table I (1st and 2nd line from the 2nd and 3rd entry) the following equations were developed and used to calculate the concentration of urinary LTE₄ ($C_{\rm LTE_4}$) from the measured ratio m/z 399/402 or 253/256 for [20,20,20- 2 H₃]LTE₄ (eqn. 1) and m/z 399/405 or 253/259 for [14,15,17,17,18,18- 2 H₆]LTE₄

Table I Extent and variability of the 2 H/H-exchange during catalytic one-step reduction/de-sulphurization of [20,20,20- 2 H $_3$]LTE $_4$ and [14,15,17,17,18,18- 2 H $_6$]LTE $_4$

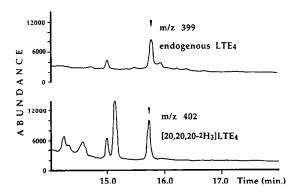
Val	ues	are	mean	±	S.D.	from	six	determinations
-----	-----	-----	------	---	------	------	-----	----------------

LTE ₄	Ratio m/z 399 to m/z of $[M - PFB]^{-\alpha}$	Percentage of m/z 399 from total ^b	Percentage of $m/z [M - PFB]^{-a}$ from total ^b
² H ₃ -LTE ₄	0.059 ± 0.024	4.17 ± 0.14	90.6 ± 4.8
2 H ₃ -LTE ₄ 2 H ₆ -LTE ₄	0.190 ± 0.030	5.32 ± 2.34	32.7 ± 5.6
¹⁸ O ₂ -LTE ₄	0.002 ± 0.0007	0.70 ± 0.02	89.8 ± 1.2

 $^{^{}a}$ [M - PFB] corresponds to the ions at m/z 402, 405 and 403 for 2 H₃-LTE₄, 2 H₆-LTE₄ and 18 O₂-LTE₄, respectively. b Total is the sum of the peak areas of the [M - PFB] ions for the corresponding LTE₄ analog as described in the text.

(eqn. 2) and from the concentration in the urine of the weighted internal standard $(C_{[20,20,20,20,2H_3]LTE_4})$ or $C_{[14,15,17,17,18,18,2H_6]LTE_4})$.

$$C_{\text{LTE}_4} = \{ (m/z \ 399/402S \times 0.906) - 0.042 \}$$


$$\times C_{[20,20,20^{-2}H_3]LTE_4}$$
 (1)

$$C_{\text{LTE}_4} = \{ (m/z \ 399/405 \times 0.327) - 0.053 \}$$

$$\times C_{[14,15,17,17,18,18,^2H_6]LTE_4}$$
 (2)

LTE₄ was determined by GC-MS in 20-ml urine samples of a healthy volunteer spiked separately with 2 ng of each $[1,1^{-18}O_2]$ LTE₄, $[20,20,20^{-2}H_3]$ LTE₄ and $[14,15,17,17,18,18^{-2}H_6]$ LTE₄ as the internal standards. Applying eqns. (1) and (2) the following concentrations of LTE₄ (pg/ml) in the urine were observed (mean ± S.D., n = 4): 60 ± 3 using $[1,1^{-18}O_2]$ LTE₄, 65 ± 4 using $[20,20,20^{-2}H_3]$ LTE₄ and 58 ± 10 using $[14,15,17,17,18,18^{-2}H_6]$ LTE₄. The corresponding coefficients of variation (C.V.) were 4.8%, 5.7% and 15%, respectively. Using $[20,20,20^{-2}H_3]$ LTE₄ as internal standard the inter-assay C.V. for the determination of LTE₄ in human urine was 6.2% (n = 4).

Healthy normal volunteers were found to excrete 17 ± 10 nmol LTE₄ per mol creatinine (mean \pm S.D., n = 11) as measured by GC-MS using [20,20,20-2H₃]LTE₄. Representative tracings from the GC-MS and GC-MS-MS analysis of urinary LTE₄ of a healthy volunteer using $[20,20,20^{-2}H_3]LTE_4$ are shown in Fig. 2. Linear regression analysis of the data obtained by GC-MS and those obtained by GC-MS-MS of the same samples gave a correlation coefficient of 0.958. The lower values from the GC-MS analyses probably result from the fact that the peak for endogenous LTE4 is not base-line resolved (Fig. 2a) so that integration of the peak area as well as the peak height gave lower values compared to GC-MS-MS (Fig. 2b). The urinary LTE₄ concentrations in healthy volunteers measured by GC-MS are within the range for healthy volunteers as measured by GC-MS-MS using $[1,1^{-18}O_2]LTE_4$ [12] and by radioimmunoassay [9,10]. An example for the utility of $[14,15,17,17,18,18-^{2}H_{6}]LTE_{4}$ as internal standard is shown in Fig. 3.

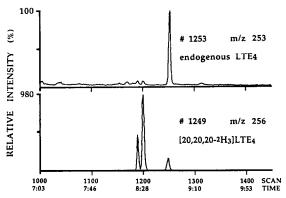


Fig. 2. Partial GC-MS (a) (Hewlett-Packard instrument) and (b) GC-MS-MS (Finnigan MAT instrument) chromatograms from the analysis of urinary LTE₄ in a 20-ml urine sample of a healthy volunteer spiked with 2 ng of [20,20,20- 2 H₃]LTE₄. In GC-MS the ions at m/z 399 and m/z 402 for endogenous and [20,20,20- 2 H₃]LTE₄ were detected in the SIM mode. In GC-MS-MS the daughter ions at m/z 253 and m/z 256 derived from the corresponding parent ions at m/z 399 and m/z 402 were detected in the SRM mode. The concentration of LTE₄ in this urine sample was determined to be 49 pg/ml by GC-MS and 50 pg/ml by GC-MS-MS.

DISCUSSION

Accurate determination of urinary LTE₄ by GC-MS requires several procedures for its extraction from urine, chromatographic separation from other cysteinyl leukotrienes and interfering compounds, and also a stable isotope-labelled LTE₄ analogue. The synthesis of ¹⁸O-, ²H-, and ¹³C-labelled cysteinyl leukotrienes has been recently reported by various groups [3,6,7]. [1,1-¹⁸O₂]LTE₄ was demonstrated to fulfill all the criteria for an ideal internal standard for the GC-MS determination of LTE₄ in human urine

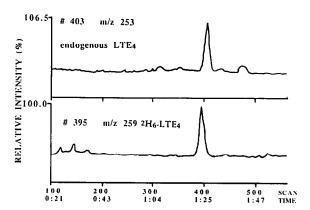


Fig. 3. Partial GC-MS-MS chromatogram from the analysis of urinary LTE₄ in a 20-ml urine sample of a healthy volunteer spiked with 4 ng of $[14,15,17,17,18,18-^2H_6]LTE_4$. SRM of m/z 253 and 259 for endogenous LTE₄ and the internal standard, respectively. The concentration of LTE₄ in this urine was determined to be 55 pg/ml.

[3]. In particular with respect to the well known H/H-exchange during catalytic hydrogenation we investigated the usefulness of the commercially available $[20,20,20^{-2}H_{3}]LTE_{4}$ and the newly synthesized $[14,15,17,17,18,18^{-2}H_{6}]LTE_{4}$ as internal standards for quantitative measurements by GC-MS. Our study demonstrates that, despite ²H/H-exchange in [20,20,20-²H₃]LTE₄ and [14,15,17,17,18,18-2H₆]LTE₄ (Figs. 1 and 2; Table I) under the conditions needed for sufficient recovery of 5-HEA [2,3], these compounds can be used as internal standards for LTE4 in GC-MS (Fig. 2). The ²H/H-exchange is more reproducible for [20,20,20-2H₃]LTE₄ than for $[14,15,17,17,18,18-{}^{2}H_{6}]LTE_{4}$ (Table I). This is also reflected in the C.V. for the quantification by GC-MS of urinary LTE₄ applying these standards: The intra-assay C.V. using [20,20,20- $^{2}H_{3}$ LTE₄ (5.7%) is only little higher than the corresponding C.V. value using [1,1-18O₂]LTE₄ (4.8%), but significantly lower than that using $[14,15,17,17,18,18^{-2}H_{6}]LTE_{4}$ (15%).

The differences in the extent of the ²H/H-exchange in [20,20,20-²H₃]LTE₄ and [14,15, 17,17,18,18-²H₆]LTE₄ result apparently from the position of ²H in the molecules of the deuterated cysteinyl leukotrienes. As two ²H atoms in [14,15,17,17,18,18-²H₆]LTE₄ are olefinic and the other four are in their close proximity, these ²H atoms seem to be more activated during the

catalytic process than the three end-standing ²H atoms in [20,20,20-²H₃]LTE₄. Similar results were observed when [20,20,20-²H₃]LTE₄ and [14,15,17,17,18,18-²H₆]LTE₄ were subjected to catalytic reduction/desulphurization using deuterium gas (data not shown). Balazy and Murphy have reported significant loss of ²H through H-atom scrambling in various ²H-labelled cysteinyl leukotrienes without however giving the position of the ²H atoms in these standards [2].

Analogous to LTC₄, LTD₄ and LTE₄ the metabolites of ω - and β -oxidation such as 20carboxy-LTE₄, 18-carboxy-dinor-LTE₄, 16-carboxy- Δ^{13} -tetranor-LTE₄ and 14-carboxy-LTE₃, which also appear in human urine [13], can be measured by GC-MS as their monohydroxy dicarboxylic acids [13]. The results from our investigation on the utility of [20,20,20- $^{2}H_{3}$]LTE₄ and [14,15,17,17,18,18- $^{2}H_{6}$]LTE₄ as internal standards suggest that if ²H-labelled analogs have to be used for quantitative measurements the label must stay preferably at positions 2, 3 and/or 4. Since cysteinyl leukotrienes are not ω - and β -oxidized from C-1 [14] enzymatic tools could be employed for the preparation of 2 H-labelled ω - and β -oxidized cysteinyl leukotrienes starting from chemically such synthesized precursors as ²H₄]LTC₄. Alternatively, ¹⁸O labelling could be employed starting from unlabelled materials [3,15].

ACKNOWLEDGEMENTS

This study was supported by grants from the Deutsche Forschungsgemeinschaft (Fr 366) and from the Bundesministerium für Forschung und Technologie (01VM90020).

REFERENCES

- 1 B. Samuelsson, Science, 220 (1983) 568.
- 2 M. Balazy and R.C. Murphy, Anal. Chem., 58 (1986) 1098.
- 3 D. Tsikas, J. Fauler and J.C. Frölich, J. Chromatogr., 574 (1992) 181.
- 4 M. Huber, S. Kästner, J. Schölmerich, W. Gerok and D. Keppler, Eur. J. Clin. Invest., 19 (1989) 53.

- 5 N.H. Maltby, G.W. Taylor, J.M. Ritter, K. Moore, R.W. Fuller and C.T. Dollery, J. Allergy Clin. Immunol., 85 (1990) 3.
- 6 C. Prakash, B.J. Sweetman, R. Sivakumar, I.M. Taffer, R.E. Zipkin and I.A. Blair, *Prostaglandins*, 37 (1989) 251.
- 7 M.J. Raftery and S.J. Gaskell, J. Lab. Comp. Radiopharm., 29 (1990) 313.
- 8 H.J. Bestmann, C.O. Meese and T. Röder, J. Lab. Comp. Radiopharm., 27 (1989) 1325.
- 9 J. Fauler, D. Tsikas, M. Holch, A. Seekamp, M.L. Nerlich, J. Sturm and J.C. Frölich, Clin. Sci., 80 (1991) 497.
- 10 J. Fauler, Ch. Neumann, D. Tsikas and J.C. Frölich, J. Invest. Dermat., 99 (1992) 8.

- 11 Y. Kikawa, A. Nakai, Y. Shigematsu and M. Sudo, J. Chromatogr., 532 (1990) 387.
- 12 D. Tsikas, J. Fauler and J.C. Frölich, Eicosanoids, Suppl. Vol. 5 (1992) 7.
- 13 A. Sala, N. Voelkel, J. Maclouf and R.C. Murphy, J. Biol. Chem., 265 (1990) 21771.
- 14 G. Jedlitschky, M. Huber, A. Völkl, M. Müller, I. Leier, J. Müller, W.-D. Lehmann, H.D. Fahimi and D. Keppler, J. Biol. Chem., 266 (1991) 24763.
- E. Mayatepek, W.-D. Lehmann, J. Fauler, D. Tsikas,
 J.C. Frölich, R.B.H. Schutgens, R.J.A. Wanders and D.
 Keppler, J. Clin. Invest., 91 (1993) 881.